IMF-600A Series p. 1012

Various output options and autoranging make the
 IMF-600 an attractive choice for many impedance measurement and process requirements.

CAPACITANCE • INDUCTANCE • RESISTANCE

- C-L-G-R

- Dissipation for capacitors
- $1 / Q$ for inductors
- Analog, digital, or 4-20 mA outputs
- High accuracy
- Protected circuitry
- Very broad range
- Analog \& digital outputs
- 4-wire shielded Kelvin test terminals
- Excellent for locating shorts
- Companion comparator unit
- Optional autoranging
- Optional battery pack

Impedance Meter

DESCRIPTION

A perfect bench companion to your DMM, the IMF-600A is a cost effective manual or autoranging digital impedance meter that complements the basic DMM to complete your test and measurement needs. With its low resistance measurement capacity and Kelvin leads, the IMF-600A is invaluable for locating PC board shorts.

A number of attractive features make it a versatile device. A companion limits comparator, Model LC-603, allows selection for all functions, on a GO/NO GO basis for inspection, sorting, quality control, component selection, etc...

Automatic measurement for all functions is provided automatically with a $31 / 2$ digit display. No balancing or manual operations are required.

Analog \& digital outputs may be used to interface to comparators or other devices.

4-Wire shielded Kelvin test terminals - short circuit location ensures precision measure-
ments even for very low impedances like contact or wire resistance and makes locating PC board short circuits an easy task.

Principle of Operation

The impedance $\mathbf{Z}_{\mathbf{x}}$ of an unknown component \mathbf{X} is defined as:

$$
Z_{x}=V_{x} / I_{x}
$$

where \mathbf{V}_{x} is the voltage across the unknown and I_{x} is the current through the unknown. The IMF-600A implements this computation as

shown conceptually in the figure. A sine wave generator drives current \mathbf{I}_{x} through unknown \mathbf{Z}_{x} and the standard resistor \mathbf{R}_{s} in series with it. Two ac coupled differential amplifiers measure the voltages \mathbf{V}_{x} and \mathbf{V}_{r} across the unknown and the resistor respectively. The impedance $\mathbf{Z}_{\mathbf{x}}$ is then computed as follows:

$$
\begin{gathered}
Z_{x}=V_{x} / I_{x} \\
Z_{x}=R_{s} V_{x} / v_{s}
\end{gathered}
$$

Except for pure resistance and conductance, $\mathbf{Z}_{\mathbf{x}}$ is a complex ratio with real and imaginary components which are then computed. The voltage being measured, e.g. Vx is broken down into the "in phase or 0° " and the "quadrature or 90° " components with respect to the test signal. These are used to provide the real and imaginary portions of the complex impedance. A pure resistance, for example, will produce only an "in phase" component, whereas an ideal capacitor will result in only a "quadrature" signal.

PROCESS CONTROL APPLICATIONS

Many industrial and manufacturing processes such as flow or fill procedures or many similar fabricating steps lend themselves to automatic control since the parameter to be controlled is often proportional to the capacitance.

GENERAL SPECIFICATIONS

C-Range	${ }^{*}$	2	3	4	5	6	7	8
Full Scale	200 pF	2 nF	20 nF	200 nF	$2 \mu \mathrm{~F}$	20 F	200 F	$2000 \mu \mathrm{~F}^{1}$
Resolution	0.1 pF	1 pF	10 pF	100 pF	1 nF	$0.01 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$
TestSignal	1.0 Vrms		100 mVrms					10 mVrms
Accuracy ${ }^{4}$	$\begin{aligned} & \pm(0.25 \%+1 \mathrm{LSD} \\ & +0.5 \% \text { Greading }) \end{aligned}$		$\pm(0.25 \%+1$ LSD + 0.5\% G reading $)$				$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.2 \% \text { Greading }) \end{aligned}$	$\begin{aligned} & \pm(5 \%+1 \text { LSD } \\ & +1 \% \text { Greading }) \end{aligned}$
G-Range	1	2	3	4	5	6	7	8
Fulliscale	$2 \mu \mathrm{~S}$	$20 \mu \mathrm{~S}$	$200 \mu \mathrm{~S}$	2 mS	20 mS	200 mS	2000 mS	20 S
Resolution	$0.001 \mu \mathrm{~S}$	$0.01 \mu \mathrm{~S}$	$0.1 \mu \mathrm{~S}$	$1 \mu \mathrm{~S}$	$10 \mu \mathrm{~S}$	0.1 mS	1 mS	10 mS
Test Signal	1.0 Vrms		100 mVrms					10 mVrms
Accuracy	$\begin{array}{l\|} \pm(0.25 \%+1 \text { LSD } \\ +0.5 \% \text { Creading }) \\ \hline \end{array}$		$\pm(0.25 \%+1 \mathrm{LSD}+0.5 \%$ C reading $)$				$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.2 \% \text { C reading }) \end{aligned}$	$\begin{gathered} \pm(5 \%+1 \text { LSD } \\ +1 \% \text { Creading }) \\ \hline \end{gathered}$
L-Range	$1^{* *}$	2	3	4	5	6	7	8
Full scale	$200 \mu \mathrm{H}$	2 mH	20 mH	200 mH	2 H	20 H	200 H	200 H
Resolution	$0.1 \mu \mathrm{H}$	$1 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	0.1 mH	1 mH	10 mH	0.1 H	0.1 H
TestSignal	100 mA	10 mA	$\pm(0.25 \%+1 \mathrm{LSD}+0.5 \%$ R reading $)$				$1 \mu \mathrm{~A}$	
Accuracy ${ }^{4}$	$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { Rreading }) \end{aligned}$						$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { R reading }) \end{aligned}$	
R-Range	1	2	3	4	5	6	7	8
Full Scale	2Ω	20Ω	200Ω	$2 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega$	$2 \mathrm{M} \Omega$	$2 \mathrm{M} \Omega^{2}$
Resolution	$1 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	0.1Ω	1Ω	10Ω 100		$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$
Test Signal	100 mA	10 mA	1 mA	$100 \mu \mathrm{~A}$			$1 \mu \mathrm{~A}$	
Accuracy	$\begin{aligned} & \pm(0.25 \% \text { + } 1 \text { LSD } \\ & +0.5 \% \text { Lreading }) \end{aligned}$		$\pm(0.25$	1 LSD + 0.	reading)		$\begin{aligned} & \pm(0.25 \%+1 \text { LSD } \\ & +0.5 \% \text { L reading }) \end{aligned}$	
D-Range	1	2	3	4	5	6	7	
Full cale	1.999 ${ }^{3}$							
Resolution	0.001							
Accuracy ${ }^{4}$	$\begin{aligned} & \pm(1 \%+0.002) \text { for } L \text { or } C>200 \text { counts } \\ & \pm(2 \%+0.01) \text { for } L \text { or } 50 \text { to } 199 \text { counts } \end{aligned}$							$\pm(5 \%+0.01)$

Impedance Models:

Parallel for C and G :

Test Conditions:

1. After correction for test lead zero reading.
2. After 10 minute warm up.
3. Between $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$.

Test Frequency: $1 \mathrm{kHz} \pm 1 \%$.
Measurement Rate: 2.5 measurements per second.
Analog Outputs: Impedance quantity and dissipation \mathbf{D} are simultaneously available at the rear panel, scaled at $1 \mathrm{~V} / 1000$ counts; accuracy: \pm (0.25% of display +1 mV).

Digital Output (Optional): 3-1/2 digit, BCD, for data and 3 bits for range; TTL, positive true.

Current Output (Optional): 4-20 mA corresponding to 0-2000 counts of display. Input Protection: Diode and resistor discharge network.

External dc Bias: Up to 100 V , floating, may be applied across a capacitive component through screw terminals on the rear panel terminal strip; 0.1 A maximum.

Power Requirements: $105-125 \mathrm{~V}$ or $210-250 \mathrm{~V}, 50-60 \mathrm{~Hz} ; 5 \mathrm{~W}$.
Calibration Interval: 12 months.
Dimensions: 21.6 cm W x 11.4 cm H x 30.5 cm D ($\left.8.5^{\prime \prime} \times 4.5^{\prime \prime} \times 12.0^{\prime \prime}\right)$
Weight: $6.8 \mathrm{~kg}(15 \mathrm{lb})$.
NOTES

* HSC Option High sensitivity capacitance range option. 20 pF full scale; 0.01 pF resolution; 1.0 Vrms test signal; accuracy ${ }^{4}(\pm 0.25 \%+0.3 \mathrm{pF})$.
** HSL Option High sensitivity inductance range option. $20 \mu \mathrm{H}$ full scale; 0.01 $\mu \mathrm{H}$ resolution; 100 mA test signal; accuracy ${ }^{4} \pm(0.25 \%+0.5 \mu \mathrm{H})$.

1. Capacitance: Higher capacitance ($>200 \mu \mathrm{~F}$) may be measured on the inductance function by the following conversion: Series model capacitance $\mathrm{C}=-2.533 \times 10^{-8} / \mathrm{L}$.
2. Resistance: Higher resistance ($>2 \mathrm{M} \Omega$) may be measured on the conductance function Range 1: R (in ohms) $=1 / G$ (in siemens).
3. Dissipation (D or 1/Q): Obtain D values by pressing D button. Values greater than 1.999 may be computed as follows:
$\mathrm{D}=\mathrm{G} / 2 \pi \mathrm{fc}=1.592 \mathrm{G}^{\prime} / \mathrm{C}^{\prime}$
$\mathrm{Q}=2 \pi \mathrm{fL} / \mathrm{R}=0.628 \mathrm{~L}^{\prime} / \mathrm{R}^{\prime}$
where $\mathrm{G}^{\prime}, \mathrm{C}^{\prime}, \mathrm{L}^{\prime}$, and R^{\prime} are in counts on the same range.
4. Accuracy: After correction for test lead zero reading; $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C} ; \mathrm{C}, \mathrm{L}, \mathrm{G}$, or R readings are in absolute counts; ignore decimal point.

ORDERING INFORMATION

IMF-600A
IMF-600AR
-HSC Option
-HSL Option
-DO Option
-I Option

Digital Impedance Meter
Autoranging Digital Impedance Meter High Sensitivity Capacitance (20 pF Range) High sensitivity inductance ($20 \mu \mathrm{H}$ Range) Digital output of reading and range Current output (4-20 mA corresponding to 0-2000 counts of display)

LC-603
BP-511

Single Channel Digital Limits Comparator (Requires DO option; may be cascaded) Battery Pack, AC Source, 115 V, 60 Hz, 300 W (see p. 45)

